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1. INTRODUCTION AND RESULTS

Let [!k , &�<k<�] be a sequence of independent, identically distri-
buted random variables with E!0=0 and E!2

0={2. We assume that the
distribution of the observation Xk can be written in a parametric form by
a finite-dimensional parameter (}k , *k), *k=(*k, 1 , *k, 2 , ..., *k, p). Namely,

Xk=}k :
&�< j<�

R(k& j, *k) !j .

We assume that �&�< j<� R2( j, *k)<�. This assumption implies that
EX 2

k<�. We note that [Xk , &�<k<�] is a linear process, which is
used very often to model dependence between observations. In this paper
we assume that the observations exhibit long-range dependence. Statistical
modeling using long-range dependence has received considerable attention
during the past 20 years. For surveys we refer the reader to Taqqu (1986)
and Beran (1992, 1994).

As Beran and Terrin (1996) pointed out, for some time series the long-
term dependence structure seems to change over time. An application to
telecommunications engineering is discussed in Beran et al. (1995). Beran
and Terrin (1996) suggested a procedure to test for the stability of the
long�memory parameter. They were testing the null hypothesis *1, 1=*2, 1

= } } } =*n, 1 . The correct limit distribution of their test statistic was
obtained by Horva� th and Shao (1999).
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In this paper we wish to test the null hypothesis

H0 : (}1 , *1)=(}2 , *2)= } } } =(}n , *n)

against the alternative

HA : there is an integer k*, 1�k*<n, such that

(}1 , *1)= } } } =(}k* , *k*){(}k*+1 , *k*+1)= } } } =(}n , *n).

Our procedure is based on the comparison of Whittle's estimates of the
parameters. Let

D(x; *)=
1

(2?)2 |
?

&?
e itx 1

f (t; *)
dt,

where f (t; *)=2? |R� (t; *)|2 and

R(t; *)=|
?

&?
eitxR� (x; *) dx.

If H0 holds, then }2
0(2?)&2 f (t; *0) is the spectral density of Xk , where

(}0 , *0) is the common value of the parameter vector under H0 . Next we
define

4k(*)=
1
k

:
1�i, j�k

D(i& j; *) Xi Xj

and

4k*(*)=
1

n&k
:

k<i, j�n

D(i& j; *) Xi X j .

We split the data into two subsets after Xk . We compute Whittle's
estimates of the parameters from both subsets. Using X1 , X2 , ..., Xk ,
Whittle's estimates (}̂k , *� k), *� k=(*� k, 1 , *� k, 2 , ..., *� k, p) are the solutions of
the equations

:
1�i, j�k

�
�*

D(i& j; *� k) Xi Xj=0

and

}̂2
k=4k(*� k).
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Similarly, the estimators (}~ k , *� k), *� k=(*� k, 1 , *� k, 2 , ..., *� k, p), are based on
Xk+1 , Xk+2 , ..., Xn and satisfy

:
k<i, j�n

�
�*

D(i& j; *� k) Xi Xj=0

and

}~ 2
k=4k*(*� k).

We assume that the parameter set K_L/(0, �)_R p is an open,
relatively compact set. We recall that the common value of the parameters
under H0 is denoted by (}0 , *0). We assume the normalization R(0; *)=1,
* # L or, equivalently,

|
?

&?
log f (t; *) dt=0, * # L.

The following regularity conditions are taken from Giraitis and Surgailis
(1990) (cf. also Fox and Taqqu (1986)): There exist 0<#=#(*)<1 and
0<C=C(*)<� such that

|
?

&?
log f (t; *) dt(#0) is twice differentiable in *

under the integral sign (1.1)

f (t; *) is continuous at all (t; *), t{0, and | f (t; *)|�C |t|&#, (1.2)

1� f (t; *) is continuous at all (t; *), (1.3)

�
�*i

1
f (t; *)

is continuous at all (t; *), 1�i�p, and

} �
�*i

1
f (t; *) }�C |t| #, 1�i�p, (1.4)

�2

�*i �*j

1
f (t; *)

is continuous at all (t; *), 1�i, j�p, (1.5)

and

} �2

�*i �t
1

f (t; *) }�C |t| #&1, 1�i�p. (1.6)
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Let W(*) be a p_p matrix with entries

wij (*)=|
?

&?
f (t; *)

�2

�*i �*j

1
f (t; *)

dt.

We assume that

W&1(*0) exists. (1.7)

Let

ci (k)=}0R(k; *0)
�

�*i
D(0; *0)

+2}0 :
1� j<�

R(k& j; *0)
�

�*i
D( j; *0), 1�i�p. (1.8)

We note that ci (k)=}0(R V (���*i) D)(k), where V denotes the convolution.
We also assume that

R(k; *0)=O( |k| &:&1�2), max
1�i�p }

�
�* i

D(k; *0) }=O( |k|&%&1�2)

max
1�i�p

|ci (k)|=O( |k| &;&1�2) with some :>0, ;>0 (1.9)

and %>0 satisfying :+;>1�2 and %+2:>1,

and

E |!0 |4+\<� with some \>0. (1.10)

We note that condition (1.9) may be replaced by some smoothness condition
on f.

First we show that n1�2(*� [nt]&*� [nt]), 0<t<1 converges in the q-metric.
Let

FC0, 1=[q : inf
$�t�1&$

q(t)>0 for all 0<$<1�2, q is nondecreasing in a

neighborhood of 0 and nonincreasing in a neighborhood of 1]

and

I(q, c)=|
1

0

1
t(1&t)

exp \&
cq2(t)

t(1&t)+ dt.
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We say that [1(t), 0�t�1] is a p-dimensional Brownian bridge with
covariance matrix 4?W&1(*0), if 1(t) is Gaussian, E1(t)=0, and
E1(t) 1T (s)=(min(t, s)&ts) 4?W&1(*0), where xT denotes the transpose
of x. The maximum norm of vectors will be denoted by & }&.

Theorem 1.1. We assume that H0 , (1.1)�(1.7), (1.9), and (1.10) are
satisfied. If q # FC0, 1 and I(q, c)<� for all c>0, then there is a sequence
of p-dimensional Brownian bridges [1n(t), 0�t�1] with covariance matrix
4?W&1(*0) such that

sup
0�t�1

&n1�2t(1&t)(*� [nt]&*� [nt])&1n(t)&�q(t)=oP(1).

Next we discuss two immediate consequences of the weighted approxi-
mation in Theorem 1.1. Since the function q(t)=1 satisfies the conditions
of Theorem 1.1, we get the weak convergence of n1�2t(1&t)(*� [nt]&*� [nt]) in
D p[0, 1], in the space of R p-valued right-continuous functions on [0, 1]
with left-hand limits.

Corollary 1.1. If H0 , (1.1)�(1.7), (1.9), and (1.10) are satisfied, then

n1�2t(1&t)(*� [nt]&*� [nt]) www�
D p[0, 1]

1(t),

where [1(t), 0�t�1] is a p�dimensional Brownian bridge with covariance
matrix 4?W&1(*0).

The next test is based on quadratic forms of Whittle's estimates. The
proposed tests are analogues of the union-intersection and Wald's tests
proposed by Hawkins (1989) to detect changes in the parameters of a
linear model. For the asymptotic properties of the union-intersection (U�I)
test in linear models we refer the reader to Horva� th and Shao (1995). Let

Zn(t)=
1

4?
n1�2t(1&t)[(*� [nt]&*� [nt]) W(*0)(*� [nt]&*� [nt])T]1�2, 0�t�1.

Functionals of Zn(t) can be used for hypothesis testing. The supremum
functional of Zn(t) gives a version of the union-intersection test.
Theorem 1.1 immediately implies that Zn(t) converges weakly and the limit
process is

M(t)=\ :
1� j�p

B2
( j)(t)+

1�2

, 0�t�1,
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where [B(1)(t), 0�t�1], ..., [B( p)(t), 0�t�1] are independent Brownian
bridges.

Corollary 1.2. We assume that H0 , (1.1)�(1.7), (1.9), and (1.10) are
satisfied. If q # FC0, 1 and I(q, c)<� for all c>0, then there is a sequence
of stochastic processes [Mn(t), 0�t�1] satisfying

[Mn(t), 0�t�1] =
D [M(t), 0�t�1] for each n

and

sup
0�t�1

|Zn(t)&Mn(t)|�q(t)=oP(1).

We note that we can choose q(t)=1 in Corollary 1.2 so the weighted
approximation includes the weak convergence in D[0, 1].

Since W(*0) is unknown, we must estimate it from the random sample
if we wish to use our limit theorems for hypothesis testing. For any k,
1�k<n, we can use

W� (k)=
k
n

W(*� k)+
n&k

n
W(*� k)

to estimate W(*0). We shall see in the proofs that W� (k) is weakly
asymptotically consistent uniformly in k. In addition to the conditions of
Theorem 1.1 we assume that W(*) is continuous in a neighborhood of *0 .
Corollary 1.1 yields that

1
(4?)1�2 n1�2t(1&t)(*� [nt]&*� [nt]) W� 1�2(nt) www�

D[0, 1]
B(t), (1.11)

where B(t)=(B(1)(t), ..., B( p)(t)) and B(1) , ..., B(p) are independent Brownian
bridges. Similarly,

Z� n(t) www�
D[0, 1] M(t), (1.12)

where

Z� n(t)=
1

4?
n1�2t(1&t)[(*� [nt]&*� [nt]) W� (nt)(*� [nt]&*� [nt])T ]1�2.

Next we discuss briefly the behavior of the processes in (1.11) and (1.12)
under the alternative. We assume that k*=[n{*] with some 0<{*<1,
and the parameters before and after the change will be denoted by
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(}(1), *(1)) and (}(2), * (2)), respectively. By Giraitis and Surgailis (1990) we
have

W(k*) w�
P {*W(*(1))+(1&{*) W(* (2)),

*� k* w�
P

*(1),

and

*� k* w�
P

*(2).

Hence

k*(n&k*) n&2(*� k*&*� k*) W� 1�2(k*)

w�
P {*(1&{*)(*(1)&*(2))({*W(*(1))+(1&{*) W(*(2)))1�2. (1.13)

If (*(1)&*(2))(W(*(1))+W(*(2)))(*(1)&*(2))T>0, then by (1.13) we have
that

sup
0�t�1

&n1�2t(1&t)(*� [nt]&*� [nt]) W� 1�2(nt)& w�
P � (1.14)

and

sup
0�t�1

|Z� n(t)| w�
P �, (1.15)

and the rate of convergence to � in (1.14) and (1.15) is a least n1�2 in
probability. So we have the consistency of procedures based on (1.11) and
(1.12) if *(1){*(2).

2. PROOFS

Let

Un(t)=
2?
}2

0 {
1
nt

Q(nt)&
1

n(1&t)
Q*(nt, n)= W&1(*0),

where

1
k

Q(k)=
�

�*
4k(*0)&E

�
�*

4k(*0)
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and

1
n&k

Q*(k, n)=
�

�*
4k*(*0)&E

�
�*

4k*(*0).

Lemma 2.1. If the conditions of Theorem 1.1 are satisfied, then

sup
0�t�1

n1�2t(1&t)
q(t)

&(*� [nt]&*� [nt])&Un(t)&=oP(1).

Proof. This is the first step in the proof of Theorem 2.2 in Horva� th and
Shao (1999).

Introducing

vm(t)=
�

�*m
D(t; *0), 1�m�p

we can write

Qm(k)= :
1�i, j�k

vm(i& j)[Xi Xj&EXi Xj]

and

Q*m(k, n)= :
k<i, j�n

vm(i& j)[Xi Xj&EXi Xj],

where Q(k)=(Q1(k), ..., Qp(k)) and Q*(k, n)=(Q1*(k, n), ..., Qp*(k, n)).
According to Lemma 2.1 it is enough to study the asymptotic properties of
the quadratic forms Q(k) and Q*(k, n), 1�k<n. The next lemma shows
that these quadratic forms can be approximated with martingales. Let

dm(k)= :
1� j<�

R( j&k) cm( j&k)

and

dm(k, l)= :
1� j<�

[R( j&k) cm( j&l)+R( j&l) cm( j&k)],

where cm(k) is defined in (1.8). Next we define Y(k)=(Y1(k), ..., Yp(k)) and
z(k, n)=(z1(k, n), ..., zp(k, n)), where

Ym(k)=dm(k)(!2
k&{2)+!k :

1�l�k&1

dm(k, l) !l
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and

zm(k, n)=zm(n+1&k)

with

zm(k)=dm(k)(!2
k&{2)+!k :

k<l�n

dm(k, l) !l .

Lemma 2.2. If the conditions of Theorem 1.1 are satisfied, then

max
1�k�n

&Q(k)& :
1�i�k

Y(i)&�k&$+1�2=OP(1), (2.1)

max
1�k<n "Q*(k, n)& :

1�i�n&k

z(i, n)"<(n&k)&$+1�2=OP(1) (2.2)

and

max
1�k�n " :

1�i�k

Y(i)+ :
1�i�n&k

z(i, n)

&\ :
1�i�n�2

Y(i)+ :
1�i�n�2

z(i, n)+"
=OP(n&$+1�2) (2.3)

with some $>0

Proof. Lemmas 3.2 and 3.4 of Horva� th and Shao (1999) contain the
proofs of (2.1) and (2.2). The relation in (2.3) is established in the proof of
Theorem 1.2 in Horva� th and Shao (1999, p. 156).

Next we collect some properties of Ym(k) and zm(k, n). Let

gm(k)= :
&�<i<�

[R(i) cm(i+k)+R(i+k) cm(i)]

and

T(i, j)=/4 { :
&�<l<�

R(l) ci (l)={ :
&�<l<�

R(l) cj (l)=
+{4 :

1�l<�

gi (l) gj (l),

where /4=E(!2
0&{2)2. The _-algebra generated by !1 , !2 , ..., !m will be

denoted by Fm . Similarly, Fk(n)=_(!n , !n&1 , ..., !n&k+1).

226 LAJOS HORVA� TH



Lemma 2.3. If the conditions of Theorem 1.1 are satisfied, then

E |Yi (k)| (4+\)�2�C, (2.4)

E |zi (k, n)| (4+\)�2�C, (2.5)

max
1�k�n

k$ } 1k :
1�m�k

EYi (m) Yj (m)&T(i, j) }=O(1), (2.6)

max
1�k<n

k$ } 1k :
1�m�k

Ez i (m, n) zj (m, n)&T(i, j) }=O(1), (2.7)

max
1�k�n

k$&1 } :
1�m�k

[E(Y i (m) Yj (m) | Fm&1)&EYi (m) Yj (m)] }
=OP(1) (2.8)

and

max
1�k<n

k$&1 } :
1�m�k

[E(z i (m, n) zj (m, n) | Fm&1(n))

&Ezi (m, n) zj (m, n)] }=OP(1) (2.9)

for all 1�i, j�p with some C>0 and $>0.

Proof. Observing that

|di (k, m)|�C(1+|k&m| )&+ with some C and 1�2<+<1 (2.10)

(cf. Lemma 4.5 in Horva� th and Shao, 1999), Rosenthal's inequality
(cf. Theorem 2.12 in Hall and Heyde, 1980) gives (2.4) and (2.5).

Elementary arguments give

:
1�m�k

EY i (m) Yj (m)=/4 :
1�m�k

di (m) dj (m)

+{4 :
1�m�k

:
1�l�m&1

di (m, l) dj (m, l).

Next we write

di (m)= :
&�<l<�

R(l) ci (l)& :
l�&k

R(l) ci (l).
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Using Lemma 4.5 of Horva� th and Shao (1999), one can derive from condition
(1.9) that

:
k�|l|

|R(l) ci (l)|=O(k&+) with some 1�2<+<1 (2.11)

and therefore

} :
1�m�k

di (m) dj (m)&k { :
&�<l<�

R(l) ci (l)={ :
&�<l<�

R(l) cj (l)=}
=O(k1&+), (2.12)

as k � �.
Similarly to (2.12) we have that

:
&�<l<�

[ |R(l) ci (l+m)|+|R(l+m) ci (l)|]

=O(m&+) with some 1�2<+<1 (2.13)

(cf. Lemma 4.5 in Horva� th and Shao, 1999). Using (2.13) we obtain that

:
1�m�k

:
1�l�m&1

d i (m, l) d j (m, l)

= :
1�m�k

:
1�l�m&1

gi (m&l) gj (m&l)

+ :
1�m�k

:
1�l�m&1

[d i (m, l) dj (m, l)& gi (m&l) gj (m&l)]

+ :
1�m�k

:
1�l�m&1

g i (m&l)[d j (m, l)& gj (m&l)]

+ :
1�m�k

:
1�l�m&1

g j (m&l)[d i (m, l)& gi (m&l)]

=k :
1�l<�

g i (l) gj (l)+O(k2&2+)

with some 1�2<+<1, which also completes the proof of (2.6). Similar
arguments give (2.7).

The results in (2.8) and (2.9) are taken from Horva� th and Shao (1999).

Lemma 2.4. If the conditions of Theorem 1.1 are satisfied, then

lim
$ � 0

lim sup
n � �

P { sup
0�t�$

n&1�2 " :
1�k�nt

Y(k)" <q(t)>x==0 (2.14)
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and

lim
$ � 0

lim sup
n � �

P { sup
0�t�$

n&1�2 " :
1�k�nt

z(k, n)"<q(t)>x==0 (2.15)

for all x>0.

Proof. Horva� th and Shao (1999, Lemma 3.1) showed that there are
constants _~ �0 and Wiener processes [W� i (t), 0�t<�] such that

} :
1�k�m

Yi (k)&_~ i W� i (m) }=O(m&&+1�2) a.s. (2.16)

with some &>0. By the scale transformation of Wiener processes we get
that W� i, n(t)=n&1�2W� i (nt) are also Wiener processes and (2.16) yields

n& sup
1�n�t�1 } n&1�2 :

1�k�nt

Yi (k)&_~ i W� i, n(t) }<t&&+1�2=OP(1) (2.17)

with some &>0. It is well known (cf. Cso� rgo� and Horva� th, 1993, p. 181)
that

lim
t a 0

t1�2�q(t)=0 (2.18)

and

lim
$ � 0

P[ sup
0�t�$

|W� i, n(t)|�q(t)>x]=0 (2.19)

for all x>0, 1�i�p, and 1�n<�. By (2.17) have that

sup
0�t�$ } n&1�2 :

1�k�nt

Yi (k)&_~ i W� i, n(t) }<q(t)

�_~ i sup
0�t�1�n

|W� i, n(t)|�q(t)

+{ sup
1�n�t�$ } n&1�2 :

1�k�nt

Yi (k)&_~ i W� i, n(t)}<t&&+1�2=
_{n& sup

1�n�t�$
t1�2�q(t)=

=oP(1)+OP(1) sup
0�t�$

t1�2�q(t),

and therefore (2.14) follows from (2.18).
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The proof of (2.15) is similar to that of (2.14) and therefore it is omitted.

We say that 1*(t)=(11*(t), ..., 1p*(t)) is a p-dimensional Wener process
with covariance matrix T, if 1*(t) is Gaussian with E1i*(t)=0 and
E1i*(t) 1j*(s)=T(i, j) min(t, s).

Lemma 2.5. If the conditions of Theorem 1.1 are satisfied, then

n&1�2 :
1�m�nt

Y(m) www�
Dp[0, 1]

1*(t) (2.20)

and

n&1�2 :
1�m�nt

z(m, n) www�
DP[0, 1]

1*(t), (2.21)

where [1*(t), 0�t<�] is a p-dimensional Wiener process with covariance
matrix T.

Proof. We prove only (2.20) because the proof of (2.21) is essentially
the same.

The tightness of n&1�2 �1�m�nt Y(m) follows from (2.16).
Let 0�t1 , t2 , ..., tN�1 and &(i, j), 1�i�p, 1� j�N, be constants. We

need the convergence of the final dimensional distributions, so it is enough
to show that

n&1�2 :
1�i�p

:
1� j�N

&(i, j) :
1�k�[ntj]

Yi (k) w�
D N(0, A2), (2.22)

where N(0, A2) is a normal random variable with zero mean and variance,

A2= :
1�i, i $�p

:
1� j, j $�N

min(t j , tj $) &(i, j) T(i, i $) &(i $, j $).

Let

e(m)= :
1�k�m

'm ,

where

'm= :
1�i�p

:
1� j�N

&(i, j) Yi (k) I[k�[nt j]].
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We note that

e(n)= :
1�i�p

:
1� j�N

&(i, j) Y i (k).

Elementary arguments show that [e(m), Fm , 1�m�n] is a martingale. By
Skorokhod's representation theorem (cf. Hall and Heyde, 1980, pp. 269)
there is a Wiener process [W(t), 0�t<�] and stopping times s1 , s2 , ..., sn

such that

e(m)=W(sm), 1�m�n, (2.23)

E(sm | Fm&1)=E('2
m | Fm&1), 1�m�n (2.24)

and

E |sm | 1+\�4�c(1+\�4) E |'m |2+\�2, 1�m�n. (2.25)

Next we show that

:
1�m�n

sm&nA2=OP(n1&$) (2.26)

with some $>0. By (2.24) we can write

:
1�m�n

sm&nA2= :
1�m�n

[sm&E(sm | Fn&1)]

+ :
1�m�n

[E('2
m | Fm&1)&E'2

m]

+ :
1�m�n

E'2
m&nA2.

By (2.4) and (2.25) we obtain that

E |sm | 1+\�4�C, 1�m�n (2.27)

with some constant C. Hence Theorem 2.18 in Hall and Heyde (1980)
yields

:
1�m�n

[sm&E(sm | Fm&1)]=O(n(8+\)�(8+2\)) a.s.

Using (2.8) we get

:
1�m�n

[E('2
m | Fm&1)&E'2

m]=OP(n1&$),
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while (2.6) implies that

:
1�m�n

E'2
m&nA2=O(n1&$)

with some $>0. The proof of (2.26) is complete
Combining (2.23) and (2.26) with the modulus of continuity of W we

conclude that

e(n)&W(nA2)=oP(n1�2),

which implies (2.22).

Let

|n(t)=n1�2t(1&t) { 1
nt

:
1�m�nt

Y(m)&
1

n&nt
:

1�m�n&nt

z(m, n)= , 0�t�1.

Lemma 2.6. If the conditions of Theorem 1.1 are satisfied, then there is
a sequence of p-dimensional Brownian bridges [1� n(t), 0�t�1] with
covariance matrix T such that

sup
0�t�1

&|n(t)&1� n(t)&�q(t)=oP(1).

Proof. First we note that [Y(m), 1�m�n�2] and [z(m, n), 1�m<
n�2] are independent for each n. So by Lemma 2.5,

n&1�2 \ :
1�m�nt

Y(m), :
1�m�nt

z(m, n)+ wwww�
D 2p[0, 1�2]

(1(1)(t), 1(2)(t)),

(2.28)

where 1(1) and 1(2) are independent p-dimensional Wiener processes with
covariance matrix T. Using (2.3) we get that

sup
0�t�1�2 "|n(t)&n&1�2 { :

1�m�nt

Y(m)

&t \ :
1�m�n�2

Y(m)+ :
1�m�n�2

z(m, n)+="<t=OP(n&$) (2.29)
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and

sup
1�2�t�1 "|n(t)&n&1�2 {& :

1�m�n&nt

z(m, n)

+(1&t) \ :
1�m�n�2

Y(m)+ :
1�m�n�2

z(m, n)+="<(1&t)=OP(n&$)

(2.30)

with some $>0. Thus (2.28) implies that

|n(t) www�
Dp[0, 1]

1� (t), (2.31)

where

1� (t)={1(1)(t)&t(1(1)(1�2)+1(2)(1�2)),
&1(2)(1&t)+(1&t)(1(1)(1�2)+1(2)(1�2)),

0�t�1�2
1�2�t�1.

Computing the covariance structure of 1� (t), one can easily verify that 1� (t)
is a Brownian bridge with covariance matrix T.

By the weak convergence in (2.31) we can find p-dimensional Brownian
bridges [1� n(t), 0�t�1] such that

[1� n(t), 0�t�1] =
D [1� (t), 0�t�1]

for each n and

sup
0�t�1

&|n(t)&1� n(t)&=oP(1).

Using Lemma 2.14, (2.29), and (2.30) we obtain that

lim
$ � 0

lim sup
n � �

P[ sup
0�t�$

&|n(t)&�q(t)>x]=0,

lim
$ � 0

lim sup
n � �

P[ sup
1&$�t�1

&|n(t)&�q(t)>x]=0

and by Cso� rgo� and Horva� th (1993, p. 189)

lim
$ � 0

P[ sup
0�t�$

&1� (t)&�q(t)>x]=0,

lim
$ � 0

P[ sup
1&$�t�1

&1� (t)&�q(t)>x]=0

for all x. The proof of Lemma 2.6 is complete.

233CHANGE-POINT DETECTION



Proof of Theorem 1.1. Combining Lemmas 2.1 and 2.1 with (2.6) we get
that

sup
0�t�1 "n1�2t(1&t)(*� [nt]&*� [nt])&

2?
}2

0

1� n(t) W&1(*0)"<g(t)=oP(1).

Next we note that (2?�}2
0) 1� n(t) W&1(*0) is a p-dimensional Brownian

bridge with covariance matrix (2?�}2
0)2 W&1(*0) T(*0) W&1(*0). Giraitis

and Surgailis (1990) showed that n1�2(*n&*0) is asymptotically normal
with mean 0 and covariance matrix 4?W&1(*0). Hence (2?�}2

0)2 W&1(*0)
T(*0) W&1(*0)=4?W&1(*0), which completes the proof of Theorem 1.11.

REFERENCES

1. J. Beran, Statistical methods for data with long-range dependence (with discussion),
Statist. Sci. 7 (1992), 404�416.

2. J. Beran, ``Statistics for Long-Memory Processes,'' Chapman 6 Hall, New York, 1994.
3. J. Beran, R. Sherman, M. N. Taqqu, and W. Willinger, The variable-bit-rate video traffic

and long-range dependence, IEEE Trans. Commun. 42 (1995), 1566�1579.
4. J. Beran, and N. Terrin, Testing for a change of the long-memory parameter, Biometrika

83 (1996), 627�638.
5. M. Cso� rgo� and L. Horva� th, ``Weighted Approximations in Probability and Statistics,''

Wiley, Chichester, 1993.
6. M. Cso� rgo� and L. Horva� th, ``Limit Theorems in Change-Point Analysis,'' Wiley,

Chichester, 1997.
7. R. Fox and M. S. Taqqu, Large-sample properties of parameter estimates for strongly

dependent stationary Gaussian time series, Ann. Stat. 14 (1986), 517�532.
8. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms of strongly

dependent linear variables and its application to asymptotic normality of Whittle's
estimate, Probab. Theory Related Fields 86 (1990), 87�104.

9. P. Hall and C. C. Heyde, ``Martingale Limit Theory and Its Application,'' Academic
Press, New York, 1980.

10. D. L. Hawkins, A U-I approach to retrospective testing for shift parameters in a linear
model, Comm. Statist. - Theory Method 18 (1989), 3117�3134.

11. L. Horva� th and Q.-M. Shao, Limit theorems for the union-intersection test, J. Statist.
Planning Inference 44 (1995), 133�148.

12. L. Horva� th and Q.-M. Shao, Limit theorems for quadratic forms with applications to
Whittle's estimate, Ann Appl. Probab. 9 (1999), 146�187.

13. M. S. Taqqu, A bibliographical guide to self-similar processes and long-range dependence,
in ``Dependence in Probability and Statistics,'' pp. 137�162, Birkha� user, Boston, 1986.

234 LAJOS HORVA� TH


	1. INTRODUCTION AND RESULTS
	2. PROOFS 
	REFERENCES 

